楼主: 图腾部落

第二期有奖讨论:CUDA你知道多少

[复制链接]
论坛徽章:
28
八级虎吧徽章
日期:2009-03-03 17:57:50蜘蛛蛋
日期:2013-03-04 10:05:46迷宫蛋
日期:2013-05-21 11:58:33蛋疼蛋
日期:2013-07-18 16:11:37蜘蛛蛋
日期:2013-07-23 17:23:40ITPUB社区12周年站庆徽章
日期:2013-10-08 14:56:08本田
日期:2013-11-20 12:38:09奥迪
日期:2013-12-20 10:29:33一汽
日期:2014-01-10 16:21:57夏利
日期:2014-01-21 10:39:35
81#
发表于 2009-12-22 12:36 | 只看该作者
CUDA是NVIDIA近来力推的东西,简单的说,CUDA可以认为是一种以C语言为基础的平台,主要是利用显卡强大的浮点运算能力来完成以往需要CPU 才可以完成的任务。CPU的特点是什么都能干,但不够专,运算能力不高,而显卡则很专,专门运算图形方面的浮点运算,能力比CPU强10倍以上。但显卡的应用范围狭窄,所以NVIDIA为了让它的显卡在电脑中有更高的地位,就搞了这么个CUDA。
想用CUDA,必须是NVIDIA的显卡,而且要是GEFORCE 8以后的显卡。平常没什么用,只是在转换视频格式,以及看高清时有点作用。暂时CUDA的作用范围仍然比较狭窄,就看NVIDIA能把它如何发展了。

使用道具 举报

回复
论坛徽章:
0
82#
发表于 2009-12-22 13:35 | 只看该作者
CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出的运算平台。
随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此N卡厂商推出CUDA,让显卡可以用于图像计算以外的目的。
目前只有G80平台的N卡才能使用CUDA,工具集的核心是一个C语言编译器。G80中拥有128个单独的ALU,因此非常适合并行计算,而且数值计算的速度远远优于CPU。
CUDA的SDK中的编译器和开发平台支持Windows、Linux系统,可以与Visual Studio2003集成在一起。
目前这项技术处在起步阶段,仅支持32位系统,编译器不支持双精度数据等问题要在晚些时候解决。当然还有就是Geforce8系列显卡高昂的价格问题了。
CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。

使用道具 举报

回复
论坛徽章:
0
83#
发表于 2009-12-22 13:38 | 只看该作者
CUDA(Compute Unified Device Architecture),
CUDA的出现,使一直孤军奋战的CPU终于有了工作伙伴,提高运行速度不再是无限压榨CPU的最高速度,在几百个辛勤的“小弟”的帮助下,CPU从抹桌洗碗的孤单打工族,摇身一变成了部门总管,哪里有工作,指挥小弟们一拥而上。有了CUDA,几乎已到极限的运行速度再提高几百倍不是梦,计算机业似乎踏入了一个全新的领域。
但对于这种速度的提升,前途却不是那么坦荡,开发人员现在可以用C语言编写程序,利用GPU来协助CPU处理数据,听起来似乎万事俱备,但其复杂度却不是C语言编写程序可比的,CUDA编程语言几百页的说明要烂熟于心,这已经不是易事,缺乏专业的开发工具,使编程的第一步难上加难,不管是WINDOWS还是LINUX,在安装了对应的驱动,SDK,工具包之后,还要配合别的软件以及修改N多注册表项,一个字节的修改错误导致的出错提示,让初学者们已经搜尽百度。高手们不断的写出模式包,安装教程,说明,却又被软件版本不断淘洗,某个模式包对应某个版本,某种修改对应某个版本的工具包……
用CUDA编写程序时,又被各种数字的乘法搞晕,栅格中的几行几列,乘以几加几,全部要用编程员的大脑计算,检验起来更是头大如斗,从LOCAL到SHARED,各种不同的缓存速度又不同,可以处理的数据也不同……
开发环境的简化,需要大量程序员的努力,但这种大量努力的前提,是GPU技术的需求性的提高。利用GPU提高运算速度是可行的,但必须是大量单调却统一的计算工作,再分配给所有GPU并发执行,所以提速几百倍只限于一部分工作,而且需要很好的统筹安排,这也要耗费CPU的传统能力和程序员的脑细胞。

使用道具 举报

回复
论坛徽章:
0
84#
发表于 2009-12-22 13:44 | 只看该作者
CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。
由于目前存在着多种GPU版本的NVIDIA显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有NVIDIA CUDA-enable的硬件支持,NVIDIA公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品

使用道具 举报

回复
论坛徽章:
4
2012新春纪念徽章
日期:2012-01-04 11:56:01
85#
发表于 2009-12-22 13:46 | 只看该作者
CUDA的出现,使一直孤军奋战的CPU终于有了工作伙伴,提高运行速度不再是无限压榨CPU的最高速度,在几百个辛勤的“小弟”的帮助下,CPU从抹桌洗碗的孤单打工族,摇身一变成了部门总管,哪里有工作,指挥小弟们一拥而上。有了CUDA,几乎已到极限的运行速度再提高几百倍不是梦,计算机业似乎踏入了一个全新的领域。
但对于这种速度的提升,前途却不是那么坦荡,开发人员现在可以用C语言编写程序,利用GPU来协助CPU处理数据,听起来似乎万事俱备,但其复杂度却不是C语言编写程序可比的,CUDA编程语言几百页的说明要烂熟于心,这已经不是易事,缺乏专业的开发工具,使编程的第一步难上加难,不管是WINDOWS还是LINUX,在安装了对应的驱动,SDK,工具包之后,还要配合别的软件以及修改N多注册表项,一个字节的修改错误导致的出错提示,让初学者们已经搜尽百度。高手们不断的写出模式包,安装教程,说明,却又被软件版本不断淘洗,某个模式包对应某个版本,某种修改对应某个版本的工具包……
用CUDA编写程序时,又被各种数字的乘法搞晕,栅格中的几行几列,乘以几加几,全部要用编程员的大脑计算,检验起来更是头大如斗,从LOCAL到SHARED,各种不同的缓存速度又不同,可以处理的数据也不同……
开发环境的简化,需要大量程序员的努力,但这种大量努力的前提,是GPU技术的需求性的提高。利用GPU提高运算速度是可行的,但必须是大量单调却统一的计算工作,再分配给所有GPU并发执行,所以提速几百倍只限于一部分工作,而且需要很好的统筹安排,这也要耗费CPU的传统能力和程序员的脑细胞。
然而目前来讲,GPU并不是电脑的“制式武器”,只有NVIDIA的显卡支持此种技术,这使得有些初学者不得不用CPU来模拟GPU的功能,性能方面的数据完全无法参考。打开市场,让NVIDIA显卡成为电脑内必要的组成部分,成了一切进展的前提,由此推断,NVIDIA与两大CPU厂商合作,使其集成在主板上的可能性是很高的,也有可能与笔记本厂商合作,使大部分笔记本带有NVIDIA的显卡,使之有CUDA开发的可能。
总而言之,提高市场占有度,才能提高CUDA开发的可能性和必要性,需求量有了,才能推动开发环境的简化,编程员们才能更快的使用GPU进行大规模的软件开发。

使用道具 举报

回复
论坛徽章:
0
86#
发表于 2009-12-22 13:48 | 只看该作者
CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。
由于目前存在着多种GPU版本的NVIDIA显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有NVIDIA CUDA-enable的硬件支持,NVIDIA公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品

使用道具 举报

回复
论坛徽章:
0
87#
发表于 2009-12-22 13:53 | 只看该作者
CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出的运算平台。
  CUDa是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。开发人员现在可以使用C语言来为CUDA™架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序于是就可以在支持CUDA™的处理器上以超高性能运行。 将来还会支持其它语言,包括FORTRAN以及C++。
  随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此NVidia推出CUDA,让显卡可以用于图像计算以外的目的。
  目前只有G80、G92、G94和GT200平台的NVidia显卡才能使用CUDA,工具集的核心是一个C语言编译器。G80中拥有128个单独的ALU,因此非常适合并行计算,而且数值计算的速度远远优于CPU。
  CUDA的SDK中的编译器和开发平台支持Windows、Linux系统,可以与Visual Studio2005集成在一起。
  Geforce8CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
  从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
  开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和 CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
  运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。
  由于目前存在着多种GPU版本的NVidia显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的 GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有 NVIDIA CUDA-enable的硬件支持,NVidia公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品

使用道具 举报

回复
论坛徽章:
0
88#
发表于 2009-12-22 13:55 | 只看该作者
从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。
由于目前存在着多种GPU版本的NVIDIA显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有NVIDIA CUDA-enable的硬件支持,NVIDIA公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品

使用道具 举报

回复
论坛徽章:
3
授权会员
日期:2009-11-30 16:04:44行业板块每日发贴之星
日期:2010-01-27 01:01:082010新春纪念徽章
日期:2010-03-01 11:20:50
89#
发表于 2009-12-22 14:16 | 只看该作者
CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出的运算平台。
  CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。开发人员现在可以使用C语言来为CUDA™架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序于是就可以在支持CUDA™的处理器上以超高性能运行。 将来还会支持其它语言,包括FORTRAN以及C++。
  随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此NVidia推出CUDA,让显卡可以用于图像计算以外的目的。
  目前只有G80、G92、G94和GT200平台的NVidia显卡才能使用CUDA,工具集的核心是一个C语言编译器。G80中拥有128个单独的ALU,因此非常适合并行计算,而且数值计算的速度远远优于CPU。
  CUDA的SDK中的编译器和开发平台支持Windows、Linux系统,可以与Visual Studio2005集成在一起。
  Geforce8CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
  从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
  开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
  运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。
  由于目前存在着多种GPU版本的NVidia显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有NVIDIA CUDA-enable的硬件支持,NVidia公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品

使用道具 举报

回复
论坛徽章:
20
青年奥林匹克运动会-竞技体操
日期:2014-09-21 17:40:36马上有房
日期:2014-10-31 14:02:43马上有车
日期:2014-10-31 14:15:27马上有车
日期:2014-10-31 14:16:00NBA常规赛纪念章
日期:2015-04-17 16:16:13NBA季后赛之星
日期:2015-06-25 09:17:08NBA季后赛纪念徽章
日期:2015-06-25 09:36:04佛罗伦萨
日期:2016-05-20 14:08:09NBA季后赛纪念徽章
日期:2016-06-24 10:30:41
90#
发表于 2009-12-22 14:32 | 只看该作者
CUDA一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员可以使用C语言来为CUDA架构编写程序。 将来还会支持其它语言,包括FORTRAN以及C++。

知道的,也仅限此处了

使用道具 举报

回复

您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

TOP技术积分榜 社区积分榜 徽章 团队 统计 知识索引树 积分竞拍 文本模式 帮助
  ITPUB首页 | ITPUB论坛 | 数据库技术 | 企业信息化 | 开发技术 | 微软技术 | 软件工程与项目管理 | IBM技术园地 | 行业纵向讨论 | IT招聘 | IT文档
  ChinaUnix | ChinaUnix博客 | ChinaUnix论坛
CopyRight 1999-2011 itpub.net All Right Reserved. 北京盛拓优讯信息技术有限公司版权所有 联系我们 未成年人举报专区 
京ICP备16024965号-8  北京市公安局海淀分局网监中心备案编号:11010802021510 广播电视节目制作经营许可证:编号(京)字第1149号
  
快速回复 返回顶部 返回列表