楼主: 图腾部落

第二期有奖讨论:CUDA你知道多少

[复制链接]
论坛徽章:
0
111#
发表于 2009-12-23 14:04 | 只看该作者
希望复制的少一点,作为关注CUDA发展的程序员,想看到些中肯的意见,想知道未来自己的努力方向和可能的就业趋势

使用道具 举报

回复
论坛徽章:
0
112#
发表于 2009-12-23 14:10 | 只看该作者
CUDA最主要的包含两个方面:一个是ISA指令集架构;第二硬件计算引擎;实际上是硬件和指令集。 也就是说我们可以把CUDA看做是与X86或者cell类似的架构,但是是基于是GPU,而不是传统的CPU。

使用道具 举报

回复
论坛徽章:
0
113#
发表于 2009-12-23 14:15 | 只看该作者
CUDA的能力是大量统一和单调的工作,我们做WEB开发的恐怕这方面就没有很好的应用。或者说有的话也是大的公司或社区作为组件推出,基层的程序员没有机会接触这样的开发

使用道具 举报

回复
论坛徽章:
23
2010新春纪念徽章
日期:2010-03-01 11:08:29美羊羊
日期:2015-03-04 14:52:28ITPUB元老
日期:2012-11-15 11:36:58ITPUB 11周年纪念徽章
日期:2012-10-09 18:11:48ITPUB 11周年纪念徽章
日期:2012-09-28 17:34:42咸鸭蛋
日期:2012-02-08 10:01:552012新春纪念徽章
日期:2012-01-04 11:55:05ITPUB十周年纪念徽章
日期:2011-11-01 16:25:22NBA常规赛纪念章
日期:2010-04-15 14:01:112015年新春福章
日期:2015-03-06 11:58:18
114#
发表于 2009-12-23 14:39 | 只看该作者
CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出的运算平台。
随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此N卡厂商推出CUDA,让显卡可以用于图像计算以外的目的。
目前只有G80平台的N卡才能使用CUDA,工具集的核心是一个C语言编译器。G80中拥有128个单独的ALU,因此非常适合并行计算,而且数值计算的速度远远优于CPU。
CUDA的SDK中的编译器和开发平台支持Windows、Linux系统,可以与Visual Studio2003集成在一起。
目前这项技术处在起步阶段,仅支持32位系统,编译器不支持双精度数据等问题要在晚些时候解决。当然还有就是Geforce8系列显卡高昂的价格问题了。
CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。
由于目前存在着多种GPU版本的NVIDIA显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有NVIDIA CUDA-enable的硬件支持,NVIDIA公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品

使用道具 举报

回复
论坛徽章:
0
115#
发表于 2009-12-23 19:36 | 只看该作者
由于目前存在着多种GPU版本的NVIDIA显卡,不同版本的GPU之间都有不同的差异,因此驱动部分基本上可以理解为是CUDA-enable的GPU的设备抽象层,提供硬件设备的抽象访问接口。CUDA提供运行期环境也是通过这一层来实现各种功能的。目前基于CUDA开发的应用必须有NVIDIA CUDA-enable的硬件支持,NVIDIA公司GPU运算事业部总经理Andy Keane在一次活动中表示:一个充满生命力的技术平台应该是开放的,CUDA未来也会向这个方向发展。由于CUDA的体系结构中有硬件抽象层的存在,因此今后也有可能发展成为一个通用的GPGPU标准接口,兼容不同厂商的GPU产品

使用道具 举报

回复
论坛徽章:
0
116#
发表于 2009-12-23 19:38 | 只看该作者
CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。

使用道具 举报

回复
论坛徽章:
0
117#
发表于 2009-12-23 19:39 | 只看该作者
CUDA开发者软件开发包(SDK)提供了一些范例(附有源代码),以帮助使用者开始CUDA编程。这些范例包括:
· 并行双调排序
· 矩阵乘法
· 矩阵转置
· 利用计时器进行性能评价
· 并行大数组的前缀和(扫描)
· 图像卷积
· 使用Haar小波的一维DWT
· OpenGL和Direct3D图形互操作示例
· CUDA BLAS和FFT库的使用示例
· CPU-GPU C—和C++—代码集成
· 二项式期权定价模型
· Black-Scholes期权定价模型
· Monte-Carlo期权定价模型
· 并行Mersenne Twister(随机数生成)
· 并行直方图
· 图像去噪
· Sobel边缘检测滤波器
· MathWorks MATLAB® 插件 (点击这里下载)
新的基于1.1版CUDA的SDK 范例现在也已经发布了。要查看完整的列表、下载代码,请点击此处。
技术功能
· 在GPU(图形处理器)上提供标准C编程语言
· 为在支持CUDA的NVIDIA GPU(图形处理器)上进行并行计算而提供了统一的软硬件解决方案
· CUDA兼容的GPU(图形处理器)包括很多:从低功耗的笔记本上用的GPU到高性能的,多GPU的系统。
· 支持CUDA的GPU(图形处理器)支持并行数据缓存和线程执行管理器
· 标准FFT(快速傅立叶变换)和BLAS(基本线性代数子程序)数值程序库
· 针对计算的专用CUDA驱动
· 经过优化的,从中央处理器(CPU)到支持CUDA的GPU(图形处理器)的直接上传、下载通道
· CUDA驱动可与OpenGL和DirectX图形驱动程序实现互操作
· 支持Linux 32位/64位以及Windows XP 32位/64位 操作系统
· 为了研究以及开发语言的目的,CUDA提供对驱动程序的直接访问,以及汇编语言级的访问

使用道具 举报

回复
论坛徽章:
0
118#
发表于 2009-12-23 19:42 | 只看该作者
我是新手!看了大家的帖子,真是学习了,大家的讨论的内容我都能被下来了。好强大啊!赞一个!
CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出的运算平台。
随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此N卡厂商推出CUDA,让显卡可以用于图像计算以外的目的。

使用道具 举报

回复
论坛徽章:
0
119#
发表于 2009-12-23 19:43 | 只看该作者
CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。
从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。
开发库是基于CUDA技术所提供的应用开发库。目前CUDA的1.1版提供了两个标准的数学运算库——CUFFT(离散快速傅立叶变换)和CUBLAS(离散基本线性计算)的实现。这两个数学运算库所解决的是典型的大规模的并行计算问题,也是在密集数据计算中非常常见的计算类型。开发人员在开发库的基础上可以快速、方便的建立起自己的计算应用。此外,开发人员也可以在CUDA的技术基础上实现出更多的开发库。
运行期环境提供了应用开发接口和运行期组件,包括基本数据类型的定义和各类计算、类型转换、内存管理、设备访问和执行调度等函数。基于CUDA开发的程序代码在实际执行中分为两种,一种是运行在CPU上的宿主代码(Host Code),一种是运行在GPU上的设备代码(Device Code)。不同类型的代码由于其运行的物理位置不同,能够访问到的资源不同,因此对应的运行期组件也分为公共组件、宿主组件和设备组件三个部分,基本上囊括了所有在GPGPU开发中所需要的功能和能够使用到的资源接口,开发人员可以通过运行期环境的编程接口实现各种类型的计算。

使用道具 举报

回复
论坛徽章:
0
120#
发表于 2009-12-23 19:46 | 只看该作者
在20世纪80年代,我还是Los Alamos National Laboratory的科研人员,当时我有幸使用了拥有多达65,536个平行处理器的Thinking Machines超级计算机。CUDA被证明是天生用于现代大量平行(即高线程)环境的框架。它的性能优势显而易见。我的一段生产代码,现在用CUDA编写并且运行在NVIDIA GPU上,与2.6-Ghz四核Opteron系统相比,具有明显的线形伸缩和几乎两个数量级的速度提升。

启用CUDA的图形处理器作为主计算机内的联合处理器运行。这意味着每个GPU都被认为有其自己的内存和处理元素,它们是与主计算机分开的。要进行有效的工作,数据必须在主计算机的内存空间和CUDA设备之间传输。因此,性能结果必须包括IO时间才更有意义。同事们喜欢将其称为“诚实的数据”,因为它们会更准确地反映将要交付生产的性能应用程序。

我坚持与现有技术相比,一到两个数量级的性能提升是一个巨变,可以在很大程度上改变运算的某些方面。例如,以前可能需要花费一年时间的运算任务现在只要几天就可以完成,几个小时的运算突然变得可交互了,因为使用新技术它们可以在几秒钟内完成,过去不易处理的实时处理任务现在变得极易处理。最后,它为具有正确技能集和能力的顾问和工程师们提供了良好的机会,使他们可以编写高线程(或大量平行)软件。对于您来说,这种计算能力又能给您的职业、应用程序或实时处理需求带来哪些好处呢?

开始不需要任何成本,您只需要从CUDA Zone 主页下载CUDA(查找”获取CUDA”)。然后,按照您的特定的操作系统安装指导操作。您甚至不需要图形处理器,因为你可以直接使用软件模拟器,在你的笔记本或者工作站上运行,开始工作。当然,使用启动CUDA的GPU,可以获得更好的性能。或许你的计算机应该有一个这样的GPU了。在CUDA Zone 主页上查看支持CUDA的GPU链接(支持CUDA的GPU包括共享的片上内存和线程管理)。

如果要购买一个新的图形处理器卡,我建议您依次阅读以下文章,因为我将探讨不同的硬件特性(如内存带宽、注册数量、原子操作等)将如何影响应用程序的性能。这样有助于您为应用程序选择恰当的硬件。另外,CUDA Zone论坛提供了关于CUDA各个方面的大量信息,包括购买哪些硬件。

安装完毕后,CUDA Toolkit将提供一个合理的C语言程序开发工具集,它包括:

· nvcc C编译器;

· GPU 的CUDA FFT和BLAS库

· 性能分析器

· alpha 版本(截至2008年3月)的GPU的gdb调试器

· CUDA运行时驱动程序(现在还可以在标准的NVIDIA GPU驱动程序中得到)

· CUDA编程手册

nvcc C编译器完成了将C代码转换成将运行在GPU或模拟器上的可执行程序的大部分工作。幸好,汇编语言编程不要求达到很高的性能。下面的文章将介绍从其它高级语言,包括C++、FORTRAN和Python使用CUDA的内容。我假设您熟悉C/C++。不需要有平行编程或CUDA经验。这与现有CUDA文档是一致的。

创建和运行CUDA C语言程序与创建和运行其它C编程环境的工作流是一样的。面向Windows和Linux环境的明确构建和运行说明在CUDA文档中。简言之,这一工作流就是:

a. 使用最喜欢的编辑器创建或编辑CUDA程序。注意:CUDA C 语言程序的后缀为.cu。

b. 使用nvcc编译程序创建可执行程序(NVIDIA提供了带有示例的完整makefiles。通常用于CUDA设备时您只需键入make,用于模拟器时只需键入make emu=1)。

使用道具 举报

回复

您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

TOP技术积分榜 社区积分榜 徽章 团队 统计 知识索引树 积分竞拍 文本模式 帮助
  ITPUB首页 | ITPUB论坛 | 数据库技术 | 企业信息化 | 开发技术 | 微软技术 | 软件工程与项目管理 | IBM技术园地 | 行业纵向讨论 | IT招聘 | IT文档
  ChinaUnix | ChinaUnix博客 | ChinaUnix论坛
CopyRight 1999-2011 itpub.net All Right Reserved. 北京盛拓优讯信息技术有限公司版权所有 联系我们 未成年人举报专区 
京ICP备16024965号-8  北京市公安局海淀分局网监中心备案编号:11010802021510 广播电视节目制作经营许可证:编号(京)字第1149号
  
快速回复 返回顶部 返回列表