|
|
(1)在日常工作中,大家是如何进行MySQL优化的?请简单说说你的优化过程。
1、EXPLAIN
做MySQL优化,我们要善用 EXPLAIN 查看SQL执行计划。重点关注
type列,连接类型。一个好的sql语句至少要达到range级别。杜绝出现all级别
key列,使用到的索引名。如果没有选择索引,值是NULL。可以采取强制索引方式
key_len列,索引长度
rows列,扫描行数。该值是个预估值
extra列,详细说明。注意常见的不太友好的值有:Using filesort, Using temporary
2、SQL语句中IN包含的值不应过多
MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:select id from table_name where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了;再或者使用连接来替换;
3、SELECT语句务必指明字段名称
SELECT *增加很多不必要的消耗(cpu、io、内存、网络带宽);增加了使用覆盖索引的可能性;当表结构发生改变时,前断也需要更新。所以要求直接在select后面接上字段名。
4、当只需要一条数据的时候,使用limit 1
这是为了使EXPLAIN中type列达到const类型
5、如果排序字段没有用到索引,就尽量少排序
6、如果限制条件中其他字段没有索引,尽量少用or
or两边的字段中,如果有一个不是索引字段,而其他条件也不是索引字段,会造成该查询不走索引的情况。很多时候使用 union all 或者是union(必要的时候)的方式来代替“or”会得到更好的效果
7、尽量用union all代替union
union和union all的差异主要是前者需要将结果集合并后再进行唯一性过滤操作,这就会涉及到排序,增加大量的CPU运算,加大资源消耗及延迟。当然,union all的前提条件是两个结果集没有重复数据。
(2)随着MySQL中存储的数据越来越多,此时需要对MySQL中的数据进行拆分。各位是如何拆分MySQL中的数据的?
数据表的水平与垂直拆分:
垂直拆分:按字段功能主次拆分,比如最常见的商品表、商品图片表、商品详细信息…表与表之间的结构不同
水平拆分:同数据库的水平拆分原理一样主要是将数据进行拆分保存到不同的表当中,这些表的结构完全相同。、
使用用垂直拆分要主要看系统是否适合这种拆分方式,如系统可分为用户系统,商品系统、订单系统等这些业务比较明确的比较适合使用垂直拆分,垂直拆分能很好分散数据库压力。业务模块不清晰,模块耦合度较高的系统并不适合垂直拆分。垂直拆分并不能彻底解决所有的压力问题,例如有一张8000w的订单表而且订单随着时间还在一直增加,操作起这张订单表压力依然很大,如我们需要在这个表中增加(insert)一条新的数据,insert完毕后,数据库会针对这张表重新建立索引,8000w行数据建立索引的系统开销还是不容忽视的,这类情况就可以使用到水平拆分了,可以将表分成100个table,table_001一直到table_100,8000w数据平均分下来就是80万的数据(经过实际测试mysql数据量达到400w的时候性能明显降低,故而应将单个mysql的数据量控制在300W以内),这时候我们向一张只有80w行数据的table中insert数据后建立索引的时间就会呈数量级的下降,极大了提高了DB的运行时效率,提高了DB的并发量,这种拆分就是水平(横向)拆分
(3)MySQL如何实现生产环境的灰度发布?
我们不在生产环境搞,一般会模拟一个跟生产环境一样的基础软环境(规模和硬件低很多)进行发布测试。
(4)本书是一本以实战为主的MySQL图书,但也不乏有对其背后原理的讲解。你觉得在实际工作中,有哪些地方需要更多、更深入的探讨和说明?
很优秀了。谢谢。。。 |
|