大数据测试 当前全球信息数据量增长迅猛,据市场调研机构IDC预测,到2020年,全球数据总量将达到40ZB,相当于每人拥有一千张DVD光盘以上的信息量。如此大量的数据为测试数据的备份和管理带来了挑战,测试人员需要确认数据完整性,保证数据质量。面对大量而动态变化的数据和有限的测试时间,需要制定出行之有效的测试策略,开发出适用的测试工具,并完善自动化测试。 随着大数据应用的快速增长,我们需要更快速的完成数据处理。大数据挖掘的目的是找出数据与数据的关联关系,与传统软件相比,很多大数据场景中的输出是无法直接确定的,同时数据又具有多样性,需要测试人员具备更多的发散思维;面对爆炸式的数据服务,测试时需要搭建可扩展伸缩的测试平台模拟大量的测试客户端。而面对大数据中很多场景下程序输出的不确定性、大数据结构多样化、定位数据因果关系困难等问题为测试工程师带来了新的挑战。
|