12
返回列表 发新帖
楼主: jieforest

Python企业开发的10个误区

[复制链接]
论坛徽章:
277
马上加薪
日期:2014-02-19 11:55:14马上有对象
日期:2014-02-19 11:55:14马上有钱
日期:2014-02-19 11:55:14马上有房
日期:2014-02-19 11:55:14马上有车
日期:2014-02-19 11:55:14马上有车
日期:2014-02-18 16:41:112014年新春福章
日期:2014-02-18 16:41:11版主9段
日期:2012-11-25 02:21:03ITPUB年度最佳版主
日期:2014-02-19 10:05:27现任管理团队成员
日期:2011-05-07 01:45:08
11#
 楼主| 发表于 2015-1-3 22:58 | 只看该作者
It might sound simple, but even for seasoned engineers, this can be a very time-consuming process. Python was designed from the ground up with developer timelines in mind. In our experience, it’s not uncommon for Python projects to undergo three or more iterations in the time it C++ and Java to do just one. Today, PayPal and eBay have seen multiple success stories wherein Python projects outperformed their C++ and Java counterparts, with less code(see right), all thanks to fast development times enabling careful tailoring and optimization. You know, the fun stuff.

使用道具 举报

回复
论坛徽章:
277
马上加薪
日期:2014-02-19 11:55:14马上有对象
日期:2014-02-19 11:55:14马上有钱
日期:2014-02-19 11:55:14马上有房
日期:2014-02-19 11:55:14马上有车
日期:2014-02-19 11:55:14马上有车
日期:2014-02-18 16:41:112014年新春福章
日期:2014-02-18 16:41:11版主9段
日期:2012-11-25 02:21:03ITPUB年度最佳版主
日期:2014-02-19 10:05:27现任管理团队成员
日期:2011-05-07 01:45:08
12#
 楼主| 发表于 2015-1-4 21:42 | 只看该作者
Myth #8: Python lacks good concurrency support

Occasionally debunking performance and scaling myths, and someone tries to get technical, “Python lacks concurrency,” or, “What about the GIL?” If dozens of counterexamples are insufficient to bolster one’s confidence in Python’s ability to scale vertically and horizontally, then an extended explanation of a CPython implementation detail probably won’t help, so I’ll keep it brief.

Python has great concurrency primitives, including generators, greenlets, Deferreds, and futures. Python has great concurrency frameworks, including eventlet, gevent, and Twisted. Python has had some amazing work put into customizing runtimes for concurrency, including Stackless and PyPy. All of these and more show that there is no shortage of engineers effectively and unapologetically using Python for concurrent programming. Also, all of these are officially support and/or used in enterprise-level production environments. For examples, refer toMyth #7.

The Global Interpreter Lock, or GIL, is a performance optimization for most use cases of Python, and a development ease optimization for virtually all CPython code. The GIL makes it much easier to use OS threads or green threads (greenlets usually), and does not affect using multiple processes. For more information, see this great Q&A on the topic and this overview from the Python docs.

使用道具 举报

回复
论坛徽章:
277
马上加薪
日期:2014-02-19 11:55:14马上有对象
日期:2014-02-19 11:55:14马上有钱
日期:2014-02-19 11:55:14马上有房
日期:2014-02-19 11:55:14马上有车
日期:2014-02-19 11:55:14马上有车
日期:2014-02-18 16:41:112014年新春福章
日期:2014-02-18 16:41:11版主9段
日期:2012-11-25 02:21:03ITPUB年度最佳版主
日期:2014-02-19 10:05:27现任管理团队成员
日期:2011-05-07 01:45:08
13#
 楼主| 发表于 2015-1-4 21:42 | 只看该作者
Here at PayPal, a typical service deployment entails multiple machines, with multiple processes, multiple threads, and a very large number of greenlets, amounting to a very robust and scalable concurrent environment (see figure below). In most enterprise environments, parties tends to prefer a fairly high degree of overprovisioning, for general prudence and disaster recovery. Nevertheless, in some cases Python services still see millions of requests per machine per day, handled with ease.

使用道具 举报

回复

您需要登录后才可以回帖 登录 | 注册

本版积分规则 发表回复

TOP技术积分榜 社区积分榜 徽章 团队 统计 知识索引树 积分竞拍 文本模式 帮助
  ITPUB首页 | ITPUB论坛 | 数据库技术 | 企业信息化 | 开发技术 | 微软技术 | 软件工程与项目管理 | IBM技术园地 | 行业纵向讨论 | IT招聘 | IT文档
  ChinaUnix | ChinaUnix博客 | ChinaUnix论坛
CopyRight 1999-2011 itpub.net All Right Reserved. 北京盛拓优讯信息技术有限公司版权所有 联系我们 未成年人举报专区 
京ICP备16024965号-8  北京市公安局海淀分局网监中心备案编号:11010802021510 广播电视节目制作经营许可证:编号(京)字第1149号
  
快速回复 返回顶部 返回列表